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Abstract—The development of a boundary element method for free vibration analysis using par-
ticular solutions is discussed. The formulation presented is based on treating the forcing function,
in the governing differential equation. as an initially unknown distributed body force within the
domain. The volume integral due to this body force is then eliminated by approximating the
inertia force by global interpolation and polynomial function representations and finding particular
solutions for the governing. inhomogeneous equations. The resulting non-symmetric system matrix
is solved by using a modified Arnoldi’s algorithm that takes advantage of the special structure of
the substructured boundary element method. The techniques described here are embedded in a
computer program GPBEST, and the numerical examples are solved by using this computer code.

1. INTRODUCTION

Generally, the design and development of complex structures require not only the elastic
and inelastic responses but also the determination of natural frequencies and associated
mode shapes. Until recently the computation of natural frequencies has been carried out
mostly by using the finite element method-since the solution technique based on the
boundary element method (BEM) has been limited. That is, the boundary element for-
mulations werc developed by using frequency dependent fundamental solutions, conse-
quently, the procedure required the formation and solution of matrix equations that depend
implicitly on the assumed frequency. Recently, a method based on the use of static fun-
damental solutions coupled with the approximation of the inertia force by global inter-
polation functions has been developed to solve two-dimensional (Nardini and Brebbia, 1982 ;
Ahmad and Banerjee, 1986), axisymmetric (Wang and Banerjee, 1988, 1990) and three-
dimensional (Wilson e al., 1990) free vibration problems. By using the static fundamental
solutions, the system equation can be reduced to the form used in the finite element
eigenvalue analysis, except that the matrix in BEM is non-symmetrical. A major feature of
these developments is the use of global interpolation for the approximation of the inertia
force in the governing differential equation. However, considerable advantage may be
gained by using the newly developed piece-wise polynomial functions for the approximation
of the forcing function as described in this text.

This paper reports a systematic development of boundary element techniques for the
solution of frec vibration problems in isotropic bodies. Specifically, the solution of free
vibration problems using polynomial function approximation is reported for the first time
here. Since polynomial as well as global interpolation functions are used for the approxi-
mation of the forcing term, the derivation of particular solutions for both cases is detailed.
The applicability of the BEM to these problems is demonstrated by solving a number of
examples and comparing the solutions to existing finite element results. The effect of the
approximation used for the representation of the inertia force is studied by comparing BEM
solutions obtained from global interpolation and piece-wise polynomial functions.

2. BOUNDARY INTEGRAL EQUATIONS

For a homogeneous elastic body subjected to harmonic excitation, the equilibrium
equation, in the absence of body forces, is
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(A +wu,, (xX)+ ., (xX) + poru(x) =0 (la)

where /. i are Lamé material constants. p 1s the density and u, is the displacement tensor.
The above equation can be written in the operator form as

L,u,(x)+pwu(x)=0 (1b)

where L, is the Navier operator.

Generally, two different boundary element method approaches have been practised
for the calculation of natural frequencies. The first involves the conversion of the differential
equation to a boundary integral equation (BIE) in which the frequency o). appears non-
linearly in the system matrix. This can be done either by using the complex point load
solution to the forced response problem (Tai and Shaw. 1979 Niwa ¢ «/.. 1982) or by
using arbitrary singular solutions in terms of real variables (DeMey. 1976a.b). Not-
withstanding the type of fundamental solution used, the boundary integral equation, after
suitable approximation of geometry and ficld variables by interpolation functions, reduces
to a homogeneous set of algebraic equations as

(A X} = 0] (2)
The natural frequencies of the system are determuned by solving
det [(w)] = 0. (3)

Since the matrix [4] depends on the frequency, some form of determinant search procedure
must be employed. This method has two major drawbacks @ (1) the method requires repeated
formation of system matrix for different values of frequencies, which makes the technique
extremely incficient, and (b) the method can casily fuil for closcly spaced roots.

In the sccond BEM approach the forcing term is treated as a distributed body force
in a homogencous medium. That is, a boundary element formulation can be developed by
converting the differential equation (1) to an integral equation in which the inertia foree is
treated as an initially unknown body force. The boundary integral equation then becomes
(Banerjee and Butterfield, 1981)

C,(Ou () = J G, (x. (x) dS(.\‘)~{ /",,(-\',é)u,(.\')dS(-\'pr:j Gy(z, D (2)dV(2)
5 Y [
(4)

where ¢, is the traction vector at the surfuce, C,; is a matrix that arises due to the singularity
of the F, kernel at a boundary point £, and G, and F,, arc the fundamental displacement
and traction solutions, respectively, duc to a unit point load in a homogencous clastic body.
The expressions for the fundamental solutions can be found in Banerjee and Butterficld
(1981).

Let us assume that the displacement in the forcing function can be approximated by
a series. Although the displacement can be approximated by infinitely many functions, two
general classes are used in the current analysis. In the first representation the displacement
in the inertia term, at the field point or sampling point v, is approximated in terms of a
function that depends on the positive powers of the distance between the field point and
source point &, as
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w(x) =i (x) = Y, K(x.5n)¢.(En) (5a)
m=|

where K{(x, Z,) is a function of the distance between the field and source points and ¢, are
unknown coefficients associated with the source point ,,.

In the second approach the displacement. in the forcing term, is approximated by
functions of complete polynomials. The displacement is then expressed as

w(x) x i,(x) = i Kn(X) i (5b)
m=1

where K, is a vector of polynomial functions and ¢, is the vector of the unknown coefficients
associated with the polynomial terms. It should be noted that, in the above representations,
all components of the displacement vector are approximated by the same function.

Based on the approximation, a particular solution to the governing inhomogeneous
differential equation (1) can be found from

Lt (x)+ par’ii(x) =0 (6

where the particular solution is denoted by superscript 0. Noting the similarity between
eqns {6) and (1) an integral equation for the particular solution field, described by eqn (6),
can be obtained as

v

C, (') = f G,,(.v.S)I,"(.\')dS(.v)—J F,(x. cf)u,”(.\‘)dS(.x'pr:J G, (z. i () dV(z).
AY AY 13

)

By subtracting eqn (7) from egn (4), a modified integral cquation is obtained as
C, (S (8) - ﬁ G, (x, O (v)dS(x) + Jl F(x, $u (x)dS(x)

= C, (O (&) - L G, (x. 9 (x)dS () + j: F,(x, Ol () dS () + E,(8)  (8a)
where the residual vector £, is given by

E(3) = por’ fG,,(:.é)[u,(:)—:i,(:)]dV(:). (8b)

The residual vector E, is made negligible by approximating the displacement, in the inertia
term, by suitable functions, thereby arriving at a surface only integral equation.

3. PARTICULAR SOLUTIONS

The formulation developed in the previous section requires the knowledge of particular
solutions of the governing inhomogencous differential egn (6). Although the use of par-
ticular solutions is a classical technique, dating to the beginning of the systematic study of
linear ordinary differential cquations, it appears that the first application of the method of
particular solutions in the context of boundary element method was presented by Jaswon
and Maiti (1968) for the solution of plate problems under normal loading. Later, the use
of particular solutions for the analysis of centrifugal and gravitational body forces was
tentatively discussed by Lachat and Watson (1976). Banerjee and co-workers have extended
this method to the solution of a wide class of body force problems (Pape and Banerjee,
1987 Henry et al.. 1987 Banerjee et al.. 1988 Henry and Banerjee, 1988a,b). Previous
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application of this procedure for free vibration problems includes the work of Ahmad and
Banerjee (1986) for two-dimensional problems, Wang and Banerjee (1988. 1990) for axi-
symmetric and generalized axi-symmetric problems and finally Wilson er /. (1990) for
three-dimensional free vibration problems.

The determination of particular solutions requires solutions of the inhomogeneous
differential eqn (6). The forcing function, which is unknown for the free vibration problem.
can be approximated by primitive functions such as the ones given by eqn (3) and the
particular solutions are derived with respect to these primitive functions. Appropriate
selection of functions. for the approximation of the inertia term. forces the residuals
involving the volume integrals in egn (8) to be negligible. Therefore, the selection of the
primitive function is vital for the accuracy of the solutions. Although infinitely many
functions may be selected for the approximation of the forcing term, two general classes of
functions are discussed in this paper. The first type of function, which was originally used
by Lord Rayleigh (1896), is based on expressing the displacement in the forcing function
by an arbitrary variation in positive powers of the distance between the origin and a point
Z... In particular, a function that varies linearly with the distance r. is constructed as

M

i(x) = Y [R=r(x.E)]b,(E0) (9)

m=1

where r(x, ¢,,) is the distance between the source point &, and the field point or sampling
point x, at which the particular solutions are to be evaluated. R is an arbitrary constant
such as the largest dimension of the problem and ¢,(&,,) is an unknown coefficient associated
with the source point &,,. It should be noted that in the numerical implementation, the
infinite serics is replaced by a finite scries, where M is the total number of terms in the
serics. This type of interpolation function was used in all previous cigenvalue analyses.

The second primitive function used in the current analysis, for the approximation of
the forcing term, is buased on complete polynomials. It is known that polynomials form a
complete set over the cube in three-dimensional space (Davis, 1963). This can be trivially
extended to any rectangular parallelepiped. Further, this set ts also complete for any body
which can be embedded in a rectangular parallelepiped and whose displacement field can
be continuously extended to the parallclepiped. in this case the error between the true
solution and the approximate solution can be shown to vanish as the number of terms in
the expansion approaches infinity (Wilson et al., 1990). Here again, the infinite serics is
replaced by a finite number of polynomial terms, where M is the number of terms in the
polynomial series.

Assuming complete polynomials of order 2, the polynomial function can be expressed
in terms of Cartestan coordinates as

A
() = 3 Kn(xX)im (10

LR

where

K,={l x, Xy X3 xi Xi Xxj x;Xxp xx; xyx;} for 3D

Ko={l x x, xi x} xx) for 2D

and ¢,, are the associated unknown coefficients.

The functions used for the approximation of the displacement in the forcing term can
be used in two different ways: (a) a suitable combination of functions may be used to
approximate the forcing term throughout a subregion, or an entire region, and (b) a
relatively small set of functions can be associated at specific geometric locations in the
region and the overall approximation is built up as a sum of these point based functions.
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Global interpolation

The global interpolation method has been discussed previously for two- (Ahmad and
Banerjee, 1986) and three-dimensional (Wilson et al., 1990) problems. However, to illustrate
the difference between the global interpolation and polynomial function approximations
the derivation of particular solutions. based on global interpolation, is also included here.
Moreover. the particular solutions are derived systematically through the use of the Galerkin
vector, thus, the particular solutions presented here are different from the ones reported
previously. Nevertheless, since particular solutions are non-unique. the final results are not
affected by the use of these new particular solutions.

The determination of particular solutions, for the free vibration analysis, is facilitated
by the use of the Galerkin vector g,, which is related to displacements by (Fung, 1965)

W = agi.;—bg. (11a)
where, in terms of shear modulus i and Poisson’s ratio v,

[ —v
i

a=

and

Substituting the above Galerkin vector inthe governing differential equation (6), we get
(1 =v)g, i + por’s, = 0. (11b)

The displacement particular solution is then determined by approximating the displacement,
in the inertia term, by eqn (9) to arrive at

W(x) = p® T Uy(x,En)y(En) (11c)
moaw |

where

U,,-(x. ém) = (D] -+ D:I’)(S,-jr: + (D) -+ D4r)y,_l',-

_2(d+2)(l—v)—1R D _2d+3)(1=v) =1
60u(1 —v) TR 1441 —-v)

l 1
by = 30u(l—v)R’ Di= T 48u(l1—v)

5
|

and 4 is the dimensionality of the problem.

Even though all components of the displacement vector are approximated by the same
function the displacement particular solution is coupled ; that is, each component of the
displacement particular solution is related to all components of the ¢, vector. The same is
also true for particular solutions based on polynomial functions.

Using the constitutive relationship ;; = A8, x + u(u; ;+ u;,), the stress particular solu-
tion is obtained as

SAS 29:16-8
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M
G"(])(,Y) = p('u2 Z Sl/k("? 5m)¢k($:m) (I ld)
m= 1

where S, is

. . . »yy
Suk(x- gm) = (DS + Dﬁr)él/yk + (D7 + Dsr)(ork,vl +o/k,"‘:) + D‘) _';L"IE
Ds =2.D +[(d+DAi+2u]D;s. D¢ =3iD,+[(d+2)i+2u]lD,.

D7 = u(le +D3). DR = [.1(3D)_+Dq), D\) = zﬂDJ

The corresponding traction particular solution is derived from the Cauchy relationship as

[,n(x) = /’w: Z T,k(.\'. im)¢k(§m) (1 le)

=1
where
'rlk ("“ S:m) = St/k ("‘* S:m)n/ (\)

Polynomial function
Based on the representation given by egn (10), a displacement particular solution, for
the three-dimensional problem, is obtained by using the Galerkin vector as

M

uln(x) = /’(”2 Z UI/IPI("-)(b/"I (|2d)

me=|
where

U, = 12B,[(ad, —b3,10,0)} +(ad, — b3,38,2)x3 + (ad, — 3,18, x3].

U = 2085(ad,, —bhd,0,,)x,. m=234, n=m~1,

U, = 30B(ad,,—b3,8,)x). m=5,67, n=m-—4,

U, = 3B,[2a8,, (X7 +x7) = 523,87 + 3(3,,0,1 + 6,0,,)X,%,+ 20,,0,, } | x,.x,,
m=8n=1/[=2), m=9n=1[=3). m=10n=2,1=13).

The constants B, are given by

! I | 1
= e e Y - N S Y : G
B 24d(1 —v)’ B 120(1 —v) ’ 360(1 —v) ! 72(1 —v)

Using the derivative of the displacement particular solution and Hooke’s law, the stress
particular solution is obtained as

A
U:/(x) = pw: Z St/km(x)d)km (l?-b)

me-l
where S, IS

S = 248,[1.(a—h)6,»,xk +ﬂ{a(6nkxj+5/kxi)—Zb(ailél’léklxl +éi25;26k2x2 +‘5:35,'35k3-"3)}]
Som = 60B2X7[A(a—b)8,; 0+ p{a(0ud +8,0,) —2b6,8,8u}). m=2.3.4. [=m—1
S,,k,,, = l2083.\.‘[‘[}.((1‘h)6,16k1+ﬂ{a(6,16,k+(Sil(5,k)—2h(s,]6,lé“ }]. m= 5, 6, 7, 1 = m—4
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Siim = 6B,[A(a—5)0,;[0in X + 304, X7 X,y 4 304, X2 + 641 X,]
+ [ {(Ou0yn + 0 40,) X7 + 30048, + 84 00)X7 X + 3840 +6,40,,) 3,2
+ (040, 4 0,0,)X7 } —2b10,,0,,0n X7 + 3(8:40,001s + 8,0 nOir
+ 0in 0,101 ) X7 Xn + 3(040 1 84 + 0,10, Oy + 6,090,104 ) 6,7 + 0,0, 04, 11

m=8l=1,n=2), m=9%(=1Ln=3), m=10l=2,n=3).

The traction particular solution is then obtained from the stress solution as

M
ri‘)(x) = p(‘()z Z 7-’il(m(x)d)l(m (lzc)

m= 1

where

Tikm (Y) = Stjkm (x)nj (X) .

In the above equations summation over indices i, j, k are implied. For the three-dimensional
problem. i.jk = 1,2,3.

Since the primitive function, for the two-dimensional problem, is a subset of the three-
dimensional function, the two-dimensional particular solutions are obtained from the
corresponding three-dimensional solutions by setting components in the third dircction to
zero. For the two-dimensional case the indices £, j, & take the values i,k = 1,2 and the
components in the third direction are set to zero.

Only polynomials of order 2 are used in the present analysis. While higher order
polynomials can be constructed, it is unlikely that these polynomials would be of much
practical usc. This is true due to the difficulty of fitting the forcing term distribution to
multi-dimensional, higher order polynomials and also duc to the well-known tendency of
these polynomials becoming unstable. However, since only polynomials of the second order
are used for the approximation, accurate evaluation of cigenfrequencics, cspecially higher
modes, requires a subdivision of the problem domain so that within each domain the
variation of the inertia force is adequately approximated.

Determination of unknown coefficients

Notwithstanding the type of representation used for the approximation of the dis-
placement in the forcing function, the displacement in both cases is expressed in terms of
unknown cocflicients. The elimination of these coefficients requires the cvaluation of
the interpolation equation (9) or the polynomial function equation (10) at pre-selected
sumpling points. For example, consider the determination of the unknown coefficients in
the global interpolation scheme. By collocating the interpolation equation at all sampling
points a set of algebraic equations is obtained as

{u} = (AK]{s} (13)

where [AK] is a matrix of the order N x M ; N is the number of sampling points and M is
the number of source points. When the sampling points coincide with the source points a
square matrix (N x N) is obtained. This matrix can be inverted to obtain the unknown
cocflicients as

{8} = [aK]""{a} = [AK]{a}. (19
This procedure was adapted in all the free-vibration analyses reported previously using

global interpolation function. It should be noted that the matrix to be inverted is of the
order (N x N) since all components of the displacement vector are approximated by the
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same function, therefore, eqn (10) is written only for one component of the displacement
vector at each sampling point.

However, when the number of sampling points is different from the number of source
points the matrix is non-square. In this case a suitable procedure that can be used for the
determination of unknown coefficients is the least square regression approach. The least
square approach can be used for both over-determined (number of sampling points greater
than number of source points) and under-determined (number of sampling points fewer
than number of source points) systems. In the least square approach. an estimate of the
unknown coefficients {¢}. is given by

(o) = ([AK'J[AKD '[AK']a! = [AK] 4!, (15)

For the polynomial function approximation, the evaluation of unknown coetlicients, in
general, requires the solution of an over-determined system. That is, for polynomial
function of order two M = 6. tor the two-dimensional situation and M = 10. tor the three-
dimensional case, theretore, for all realistic enginecring problems. the number of unknown
cocflicients M will be less than the number of sampling points V. The unknown coctlicients
in this case are also determined by using the least square regression approach.

Note that instead of inverting an N x N matrix, as in the normal global interpolation
approach. the least square estimation requires the inversion of an M x M matrix. Thercfore,
the polynomial function procedure is much more ctficient than the previously developed
global interpolation technique, as will be confirmed by the numerical examples.

4. FORMULATION OF THE ALGEBRAIC FIGENVALUE PROBLEM

An approximate analysis based on the integral equation (8a) requires only the modeling
of the surfuce of the problem~domain. By dividing the surface into a series of boundary
patches and approximating geometry and ficld variables within cach boundary patch using
shape functions, the discretized integrals can be evaluated. In the present analysis. the
geometry, physical and particular ficld variables are approximated by isoparametric quad-
ratic shape functions and the resulting discretized integrals are evaluated numerically.
Evaluation of these boundary integrals at all surface nodes leads to the algebraic equivalent,

(AG) !t} —[AF]) (i) = [AG] (1"} — [AF] ") (16)

It is implied that the physical and particular solution fields arc approximated by the
same shape functions. While this is not a requirement, the representation of physical and
particulur solution ficlds by the same shape function makes the method computationally
efficient. To illustrate, consider the discretized integrals, corresponding to a three-dimen-
sional problem, mapped over a unit clement, i.c. a discretized form of eqn (8a).

M I 1
C,(Hud) - f G, (x(n,, ). 300 )N (o) Ayt
] B | I

m oz

v/ 1 M
+ 3y J Fi(xrion2) S an N Oronay dpon s
| i

meal

") 1 |
C.,(é)“:)(f)“ Z J J G.,(.\'('Ir-'h)~s:)-/('ll-'l:)Nx: d'/‘n”l’:“x
R

ma |

+

" 1 |
Z J J [::j(x(',l'nl)~‘5)]("1-"2)‘\/3("!"Il)d"l’h“:“
N

LER!

where Jis the Jacobian of transformation, N, is the shape function used for the interpolation
of physical variables, N, is the shape function used for the interpolation of particular
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solutions. and superscript x indicates quantities related to node z. It is obvious that the
integrals on the left-hand and the right-hand sides of the above equation are identical when
N, = N,. Thus, by choosing the same shape function for the approximation of physical
and particular solution fields the integration effort for the eigenvalue problem is not
increased from the corresponding requirement for the static problem.

The particular solutions derived in the previous section can be used to reduce eqn (16)
to

[AG] (¢} —[AF](u} = p*([AG[AQ] — [AFI[AP)) (). (n

The unknown coefficients {¢}. can be eliminated from the above equation by using eqns
(14) or (135). Then eqn (17). in terms of physical variables. becomes

[AG){} = [AF}{u} = po’* [M]{u; (18)
where
(M] = (AG][AQ] - [AF)[APD[AK].

Scparation of displacements and tractions into unknown {X'}. and known {Y}, vectors
leads to

([A] = p (M IX} = ([B] ——pmz[M]){ Y} (19)

where the mass matrices [M] and [M] are augmented to the same dimensions as [4] and
[B] by adding zeros appropriately.

Since the applied boundary loading { Y} is zero in the eigenfrequency analysis, eqn
(19), for a single region problem, reduces to a standard eigenvalue expression. [n a multi-
region analysis both the system matrices [A], [B] and the mass matrices [M]. [M] are
assembled in exactly the sume manner used in the static analysis. In this case physical field
variables at the interface between subregions will generally be non-zero but the interface
quantities at adjacent subregions are related through continuity and compatibility con-
ditions.

The eigenvalues of eqn (19) with zero on the right-hand side can be extracted by using
routines from EISPACK (Garbow, 1980) software package. However, the computing effort
of the extraction procedure, using EISPACK routines, increases rapidly with increasing
matrix size. Further, no usc is made of the special structure of boundary element matrices
or the fact that only a small portion of the spectrum is required. The extraction procedure
developed by Wilson et al. (1990). based on a modified Arnoldi’s algorithm, is used in the
present analysis.

5. NUMERICAL EXAMPLES

Cantilever beam (2-D)

The two-dimensional free vibration analysis was validated by comparing the first four
bending modes of a rectangular fixed end cantilever beam obtained by the finite element
method and the boundary element method. The length of the beam is taken as 6.5 units
and the cross-section as a 1 unit square. The material parameters used were £ = 10* units,
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Table 1. Natural frequencies (Hz) for cantilever beam

FEM MHOST 2 regions 4 regions
Mode Wilson (1986) GIA PFA GIA PFA
1 (flex) 0.378 0.371  0.376 0.362 0.375
2 (flex) 2.188 2176 2223 2126 2182

3 (axiah) — 3790 3847 3720 3748

4 (flex) 5.583 5.536 5570 5493 5.589
3 (fex) 9.908 9779 10.645 9834 10.081
Time 46 36 54 49

v=0.3 and p = 1.0 unit. Table 1 shows a comparison of various solutions. The BEM
solutions agree well with the finite element results, however. accurate evaluation of eigen-
values using the polynomial function approximation required substructuring of the can-
tilever beam. While the solution time (all reported solution times are in seconds and these
were obtained on an HP 9000 series 800 computer) using the polynomial function is less than
the corresponding global interpolation based solution time, the difference is not significant
due to the small size of the problem. The first four flexural mode shapes (Fig. 1), obtained
from the polynomial function based approach using the four region model. are also in
agreement with the shape predicted by the beam theory.

Fixed-end arch with and without openings (2-D)

This example is concerned with the evaluation of the etgenvalues of a fixed end arch.
Two different cases were studied ; in the first case the fixed-end arch was considered without
openings and in the sccond case the arch was considered to have rectangular openings. The
material properties were taken as £ = 10° units, p = 1.0 unit and v = 0.2, This problem
was studied previously by Ahmad and Banerjee (1986), however, the size and location of
the rectangular openings used. by them are not known and therefore, different dimensions
for the openings were used in the present study. Single and multi-region boundary element
modcls were used ; the six region models of the arch without the openings and with the
openings are shown in Figs 2(a) and 2(b), respectively. The first four modes based on global
interpolation and polynomial function approximations of the inertia force, for various
boundary clement models, are shown in Tables 2(a) and (b). The global interpolation
solutions and the polynomial function results using substructured models agree well with

Fig. 1. Flexural mode shapes for cantilever beam.
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(a) Without opening

QD

y
-
z

{b) With opening
Fig. 2. Multi-tegion BEM model for fixed-end arch.

cach other. The mode shapes for the six region arch model obtained by using the polynomial
function and global interpolation based approaches are identical and the mode shapes
based on polynomial functions are shown in Figs 3(a) and 3(b).

Cantilever beam (3-D)

The three-dimensional free vibration analysis was validated by computing the natural
frequencies of a cantilever beam that is fixed, in all three directions, on one face. The specific
dimensions of the problem, studied previously by Leissa and Zhang (1983) using Ritz
technique and by Wilson er al. (1990) using the boundary element method based on global
interpolation, are 1 x 1 x0.5 as shown in Fig. 4. Two different boundary element models
were used. In the first model, side A was divided into three elements, side B was divided
into two ¢lements and side C was modeled by one element. In the second model, sides B
and C were modeled as before but alongside A, the body was substructured into three
regions along the element boundaries. In all models, sides opposite to A, B and C were

Table 2. Natural frequencies (Hz) for fixed-end arch

(4) without opening

| region 3 regions 6 regions
Mode GIA GIA PFA GIA PFA
1 89.3 89.0 90.0 87.6 89.8
2 127.6 126.8 127.8 124.4 1279
3 178.4 179.5 177.1 176.8 180.4
4 236.2 2359 2394 231.8 237.6
Time 155 165 122 255 219

(b) with opening

| 58.4 56.7 57.6 56.1 56.8
2 100.0 97.2 101.9 979 100.1
3 L15.1 114.9 116.4 114.2 115.3
4 145.2 144.7 159.0 144.6 150.4

Time 1214 1460 544 946 703
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Fig. 3(a). Mode shapes for fixed-end arch without openings.

Fig. 3(b). Mode shapes for fixed-end arch with openings.

modeled by the same number of clements. The material properties used were
E = 16126 x 10® psi. v = 0.3 and p = 0.0007 b m in ~*. The results from the two-boundary
element models using both global interpolation and polynomial function approximations
of the inertia force are compared to the solutions obtained from Ritz method in Table 3.
The frequency results shown were normalized as w \/p/E. For the single region model the
maximum error using global interpolation is 1.3%, whereas the maximum error using
polynomial function approximation is 3.9%. However, using the three-region model the
maximum error in the polynomial function approximation case is reduced to 2.0%. The
solution times again indicate the advantage of polynomial function approximation
procedure. Here again, the mode shapes obtained from global interpolation and polynomial
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Elements

E = 16.126 x 106 psi fixed

v=03 nxy.z C=05in
p = 0.0007 lom /in3

w-rads?

Fig. 4. Geometry of cantilever beam.

Tuble 3. Natural frequencies for cantilever beam

PFA
Mode Type Ritz GIA 1 reg Jreg

i EB 0.447 0.441 0.455 0.441
2 S8 0.667 0.662 0.679 0.672
R T 0.788 0.788 0819 0.805
4 L 1.596 {.688 1.627 [.612
Time 930 438 792

EB—Easy bending, SB—Stiff bending, T—Torsion,
L—Extension.

function approximations are in agreement. The first four mode shapes, obtained from
polynomial function approximation, are Shown in Fig. 5.

Skewed cantilever plates (3-D)

The three-dimensional free vibration analysis was further validated by comparing the
BEM solutions for natural frequencies of skewed cantilever plates to the results obtained
by the Ritz method and the finite element method (McGee and Leissa, 1991). The free

Fig. 5. Mode shapes for rectangular cantilever beam,
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Fig. 6. Comparison of natural frequencies of skewed plate.

vibration characteristics of skewed cantilevered plates are important in the study of acro-
dynamic lifting or stabilizing surtuces. A particular case ofa skewed plate of lkength to width
ratio of 2 and width to thickness ratio of 5 was investigated. The problem was modeled as
a single region that consists of four clements along the length, two clements along the width
and one clement in the thickness direction. A two-region model was also created by dividing
the structure into hall along the length of the plate and the polynomial function based
results were obtained from this model. The boundary clement results obtained from global
interpolation and polynomial function based approximations agreed well with the results
reported by MeGee and Letssa (1991). A comparison ol the natural frequencies for the first
three modes with the corresponding Ritz and finite clement results for various skew angles
is shown in Fig. 6. The natural frequencics are normalized as t:m:\,/ ph/D. where
D = ERYI2(1 =),

6. CONCLUSION

The boundary integral cquation for free vibration problems is systematically developed
by treating the forcing function in the governing, differential equation as un initially
unknown distributed body force. By approximating the forcing function by global inter-
polation and polynomial function representations and utilizing the particular solutions of
the governing inhomogencous differential equation, o surface only integral equation is
derived. The resulting system matrix is similar to the corresponding FEM muatrix, except
in BEM the matrix is non-symmetrical. The BEM system matrix is solved by using a
modificd Arnoldi’s algorithm developed carlier in Wilson er o/, (1990). The numerical
examples presented indicate the applicability of these BEM techniques for the sotution of
free vibration problems. The results further indicate that the solution technigque based on
polynomial function approximation is computationally more efficient than the solution
procedure based on global interpolation, however, to obtain accurate results the problem
domain needs to be substructured when the polynomial function based approach is used.

The BEM solution techniques presented here may be enhanced by improving certain
features of the procedure. In the polynomial function based approach only polynomials of
the order 2 were used in the present analysis. It is possible to construct particular solutions
for higher order polynomials. While the use of higher order terms, in general, is not practical
due to the difficulty of fitting these functions in a multi-dimensional situation and also due
to the tendency of higher order polynomials becoming unstable, at Icast polynomials of the
order up to 3-4 may be attempted. This gencrally will require the introduction of interior
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points for the sampling of the forcing function. Additionally, the inclusion of particular
solutions related more intuitively to the physical situation of a problem can also be
examined. Finally, the procedure can be extended for the solution of problems involving
anisotropic materials.
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